Home
Class 12
MATHS
f(x)={[((x+3)^(2)-36)/(x-3);,x!=3],[1 al...

f(x)={[((x+3)^(2)-36)/(x-3);,x!=3],[1 alpha,,x=3]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)(2x-3), x in [1,3] , then

The range of alpha such that range of f(x)=((x^(3)-3x+6)(x-alpha))/(2(x-alpha)) be always complete set R ,is

If f(x)=det[[x-2,(x-1)^(2),x^(3)(x-1),x^(2),(x+1)^(3)x,(x+1)^(2),(x+2)^(3) then coefficient of x in f(x), is ]]

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then

If f (x) = 27x^(3) -(1)/(x^(3)) and alpha, beta are roots of 3x - (1)/(x) = 2 then

Find domain(i) f(x) = (1)/(x - 5) (ii) f(x) = (3 - x)/(x - 3) (iii) f(x) = (x^(2) - 1)/(x - 1) (iv) f(x) = (| x - 3 |)/(x - 3) (v) f(x) = (1)/(2 - sin 3x)

If f(x)=27x^(3)+(1)/(x^(3)) and alpha,beta are the roots of the equation 3x+(1)/(x)=2, then -f(alpha) is equal to