Home
Class 12
MATHS
If x^(2)+y^(2)=4, then maximum value of ...

If `x^(2)+y^(2)=4`, then maximum value of `((x^(3)+y^(3))/(x+y))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If x^2+y^2=4 then find the maximum value of (x^3+y^3)/(x+y)

If 4x^(2)+y^(2)=1 then the maximum value of 12x^(2)-3y^(2)+16xy is

If x+y=28 , then the maximum value of x^(3)y^(4) is

If x+y =28 then the maximum value of x^(3)y^(4) is

If x^2+y x^2=4 then find the xamimum value of (x^3+y^3)/(x+y)