Home
Class 11
MATHS
" If "A=[[1,0,0],[0,1,0],[a,b,-1]]" show...

" If "A=[[1,0,0],[0,1,0],[a,b,-1]]" show that "A^(2)" is an unit matrix "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [(1,0,0),(0,1,0),(a,b,-1)] , show that A^(2) is a unit matrix.

If A = {: [ ( 1,0,0) , ( 0,1,0) , ( a,b,-1)]:} show that A^(2) is a unit matrix .

If A=[(1,0,0),(0,1,0),(1,b,-10] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[(1,0,0),(0,1,0),(1,b,0] then A^2 is equal is (A) unit matrix (B) null matrix (C) A (D) -A

If A=[(1,0,0),(0,1,0),(a,b,-1)] then A^2 is equal to (A) null matrix (B) unit matrix (C) -A (D) A

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to

If A={:[(1,-1,0),(-1,2,1),(0,1,1)]and B ={:[(1,1,-1),(0,1,-1),(0,0,1)] show that B^(T)AB is a diagonal matrix, where B^(T) is the transpose of B.

If A=[(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A = [(1 ,0, 0),(0, 1,0),( a,b, -1)] , then A^2 is equal to (a) a null matrix (b) a unit matrix (c) A (d) A

If A=[[4,3,2],[-1,2,0]],B=[[1,2],[-1,0],[1,-2]] show that matrix AB is non singular.