Home
Class 10
MATHS
" If "(x^(2)+y^(2))(a^(2)+b^(2))=(ax+by)...

" If "(x^(2)+y^(2))(a^(2)+b^(2))=(ax+by)^(2)" .Prove that "(x)/(a)+(y)/(b)

Promotional Banner

Similar Questions

Explore conceptually related problems

If (a^(2) + b^(2)) (x^(2) + y^(2)) = (ax + by)^(2) , prove that : (a)/(x) = (b)/(y) .

If (a^2+b^2)(x^2+y^2)=(ax+by)^2 then prove that x/a=y/b .

If a^(x)=b^(y)=c^(2) and b^(2)=ac, prove that y=(2xz)/(x+z)

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

(x^(2))/(by + cz) = (y^(2))/(ax + cz)= (z^(2))/(ax + by)=1 find (a)/(x+a) + (b)/(y+b)+ (c )/(z+c ) = ?

If (x^(2))/(by+cz)=(y^(2))/(cz+ax)=(z^(2))/(ax+by)=1 , then value of (a)/(a+x) +(b)/(b+y) +(c )/(c+z) is

IF y^2=ax^2+2bx+c , Prove that (d^2x)/(dy^2)=(b^2-ac)/(ax+b)^3 .

If (by+cz)/(b^2+c^2)=(cz+ax)/(c^2+a^2)=(ax+by)/(a^2+b^2) then prove that x/y=y/b=z/c

{:(ax - by = a^(2) + b^(2)),(x + y = 2a):}