Home
Class 12
MATHS
If A=[(1,tan(theta/2)),(-tan(theta/2),1)...

If `A=[(1,tan(theta/2)),(-tan(theta/2),1)] and AB=I, then B=` (A) `{cos^2 (theta/2)}A` (B) `{cos^2(theta/2)}A\'` (C) `{cos^2(theta/2)}I` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

c(1+cos2theta)= (A) c 2sin^2theta (B) c2cos^2theta (C) c2tan^2theta (D) none of these

If A = [(1,-tan""(theta)/(2)),(tan""(theta)/(2), 1)] and B = [(1,tan""(theta)/(2)),(-tan""(theta)/(2), 1)] show that, AB^(-1) = [(costheta,-sin theta),(sin theta, cos theta)] .

If sin theta+sin^(2)theta=1, then cos^(2)theta+cos^(4)theta=-1(b)1(c)0(d) None of these

If A=[[1,tan theta-tan theta,1]], show that A'A^(-1)=[[cos2 theta,-sin2 thetasin2 theta,cos2 theta]]

(1-cos^2theta)sec^2 theta= tan^2 theta

The value of (cos3 theta)/(2cos2 theta-1) is equal to cos theta(b)sin theta (c) tan theta(d) none of these

tan theta * (1+cos 2 theta)= A) 2 sin theta B) sin 2 theta C) 2 cos theta D) cos 2 theta

If tan theta_(1).tantheta_(2)=k , then: (cos(theta_(1)-theta_(2))/(cos(theta_(1)+theta_(2)))=

If tan^4theta - tan^2 theta= 1 , then prove that cos^4theta+ cos^2theta = 1