Home
Class 12
MATHS
Consider a real - valued function f(x)...

Consider a real - valued function
`f(x) = sqrt(sin^(-1) x + 2) + sqrt(1 - sin^(-1)x)`
The range of f (x) is

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Consider a real-valued function f(x)= sqrt(sin^-1 x + 2) + sqrt(1 – sin^-1x) then The domain of definition of f(x) is

Domain of the function , f(x) = sqrt(sin^(-1) (log_2 x)) is

Consider the real values function 2 f(sin x ) + f(cos x) = x , then f(1/2)=

If f(x)=sin^(-1)sqrt(x-4), the range of x is

The domain of the function f(x)=sqrt(sin^(-1)(log_(2)x)) is

The range of the real-valued function f(x)=sqrt(2-x)+sqrt(1+x) is the interval

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)