Home
Class 10
MATHS
" 10."(1)" If "(a^(2))/(b+c)=(b^(2))/(c+...

" 10."(1)" If "(a^(2))/(b+c)=(b^(2))/(c+a)=(c^(2))/(a+b)=1," let us show that "(1)/(1+a)+(1)/(1+b)+(1)/(1+c)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(2)/(b + c) = b^(2)/(c +a) = c^(2)/(a + b) = 1 , then show that 1/(1+a) + 1/(1 + b) + 1/(1+c) = 1 .

If a^2/(b+c)=b^2/(c+a)=c^2/(a+b)=1 , show that 1/(1+a)+1/(1+b)+1/(1+c)=1

If a^2/(b+c)=b^2/(a+c)=c^2/(a+b)=1 , then show that 1/(1+a)+1/(1+b)+1/(1+c)=1 .

Given, a^(2) =b+c, b^(2)=c + a " & " c^(2) = a + b or (a^(2))/(b+c) = (b^(2))/(c+a) = (c^(2))/(a+b)=1 find (a)/(1+a) + (b)/(1+b) + (c )/(1+c) = ?

|(1,a,a^(2)),(1,b,b^(2)),(1,c,c^(2))|=

If (a)/(b+c)=(b)/(c+a)=(c)/(a+b)=K, then the value of K is +-(1)/(2)(b)(1)/(2) or -1(c)-1(d)(1)/(2)