Home
Class 11
MATHS
If alphaa n dbeta are acute angles such ...

If `alphaa n dbeta` are acute angles such that `t a nalpha=m/(m+1)a n dt a nbeta=1/(2m+1)` , prove that `alpha+beta=pi/4` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta are acute angles such that tan alpha=(m)/(m+1) and tan beta=(1)/(2m+1), prove that alpha+beta=(pi)/(4)

If tan alpha=m/(m+1) and tan beta=1/(2m+1) ,prove that alpha+beta=pi/4 .

If tanalpha=m/(m+1) , tanbeta=1/(2m+1) prove that alpha+beta=pi/4

lim alpha=(m)/(m+1),tan beta=(1)/(2m+1), prove that alpha+beta=(pi)/(4)

If tanA=m/(m-1)\ a n d tanB=1/(2m-1), then prove that A-B=\ pi/4

If tanalpha=m/(m+1)a n dtanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If alphaa n dbeta are acute angles satisfying cos2alpha=(3cos2beta-1)/(3-cos2beta),t h e ntanalpha= sqrt(2)tanbeta (b) 1/(sqrt(2))t a nbeta (c) sqrt(2)cotbeta (d) 1/(sqrt(2))cotbeta

If 2\ t a nalpha=3t a nbeta, prove that tan(alpha-beta)=(sin2beta)/(5-cos2beta)

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals

If alpha+beta=pi/2a n dbeta+gamma=alpha, then tanalpha equals