Home
Class 11
MATHS
[(sec2x-tan2x)" equals a) "tan(x-(pi)/(4...

[(sec2x-tan2x)" equals a) "tan(x-(pi)/(4))" b) "tan((pi)/(4)-x)" c) "cot(x-(pi)/(4))" d) "],[tan^(2)(x+(pi)/(4))]

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0 lt x lt (pi)/(4), then sec 2x - tan 2x= ................ A) tan (x- (pi)/(4)) B) tan ((pi)/(4) -x) C) tan (x+(pi)/(4)) D) tan ^(2) (x+ (pi)/(4))

int_(0)^( pi)|sin x|-|cos x||dx is equal to (a) tan((3 pi)/(8))( b) tan((pi)/(8))(c)4tan((pi)/(8))(d)2tan((3 pi)/(8))

If tan((pi)/(4)+x)*tan((pi)/(4)-x)=1, then x equals

tan x+(tan((pi)/(4))+tan x)/(1-tan((pi)/(4))tan x)=2

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +4))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan ((pi)/(4) +x))/( tan ((pi)/(4) -x ))= ((1 + tan x )/( 1- tan x )) ^(2)

(tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tan x)/(1-tan x))^(2)

Prove that (tan((pi)/(4)+x))/(tan((pi)/(4)-x))=((1+tanx)/(1-tanx))^(2)