Home
Class 11
MATHS
" 13."int(3-x^(2))/(1-2x+x^(2))*e^(x)dx=...

" 13."int(3-x^(2))/(1-2x+x^(2))*e^(x)dx=e^(x)f(x)+c rArr f(x)=

Promotional Banner

Similar Questions

Explore conceptually related problems

int ((3-x^(2))e^(x))/(1-2x+x^(2)) dx = e^(x).f(x) + c, then f(x) =

If inte^(x)((1-x)/(1+x^(2)))^(2)dx=e^(x)f(x)+c, then f(x)=

If int e^(x)((3-x^(2))/(1-2x+x^(2)))dx=e^(x)f(x)+c , (where c is constant of integration) then f(x) is equal to

If inte^(x)(1+x^(2))/((1+x)^(2))dx=e^(x)f(x)+c , then f(x)=

int Sin^(-1)((2x)/(1+x^(2)))dx=f(x)-log (1+x^(2))+c rArr f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

If int x^(2) e^(3x) dx = e^(3x)/27 f(x) +c , then f(x)=

For int (x -1)/( (x +1 ) ^(3)) e ^(x) dx = e ^(x) f (x) + c , f (x) =(x +1) ^(2).