Home
Class 11
MATHS
cosA+sinB=msinA+cosB m(A+B)=m^2+n^2-2...

`cosA+sinB=msinA+cosB m(A+B)=m^2+n^2-2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

If A+B+C=pi , prove that : sinA cosB cosC +sinB cosC cosA + sinC cosA cosB = sinA sinB sinC .

Multiply sin(A+B)=sinA cosB+ cos A sinB and sin(A-B)=sinA cosB - cosA sin B

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If |{:(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB):}|=0 then B =

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA,sinB),(-cosA,sinA,cosB)|=0 then B =

If sinA+sinB=a and cosA+cosB=b, show that cos(A+B) = (b^2-a^2)/(b^2+a^2)

Using properties of determinant. Prove that | [sinA, cosA, sinA + cosB], [sinB, cosA, sinB + cosB], [sinC, cosA, sinC + cosB] | = 0

If A+B+C=pi , prove that : cosA sinB sinC +cosB sinC sinA+cosC sinA sinB=1+cosA cosB cosC .