Home
Class 12
MATHS
Find the number of possible common tan...

Find the number of possible common
tangents that exist for the following pairs
of circles.
`x^(2) + y^(2) + 6x + 6y + 14 = 0`
`x^(2) + y(2) - 2x -4y -4 =0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) - 4x - 2y + 1 = 0 , x^(2) + y^(2) -6x -4y + 4 = 0

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) - 4x + 2y - 4 = 0, x^(2) + y ^(2) + 2x - 6y + 6 = 0

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) + 4x - 6y - 3 = 0 x^(2) + y^(2) + 4x - 2y + 4 = 0.

Find the number of possible common tangents that exist for the following pairs of circles. x^(2) + y^(2) = 4, x^(2) + y^(2) - 6 x - 8y + 16 = 0

Find the number of possible common tangent that exits for the following pairs of circle. (a) x^(2) + y ^(2) -4x -2y +1= 0, x^(2) +y^(2) -6x -4y +4=0 (b) x^(2) + y ^(2) -4 x + 2y -4=0 , x^(2) + y ^(2) + 2x - 6y + 6=0

Discuss the relative position of the fol- lowing pair of circles. x^(2) + y^(2) + 6x + 6y + 14 = 0 x^(2) + y^(2) - 2x -4y -4 = 0.