Home
Class 10
MATHS
Prove that : (sintheta-costheta)/(sint...

Prove that : `(sintheta-costheta)/(sintheta+costheta)+(sintheta+costheta)/(sintheta-costheta)=(2)/(2sin^(2)theta-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tantheta/2

Prove the following : (All angles are acute angles.) (sintheta+costheta)/(sintheta-costheta)+(sintheta-costheta)/(sintheta+costheta)=2/(sin^(2)theta-cos^(2)theta)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that: (1+sintheta-costheta)/(1+sintheta+costheta)=tan(theta/2)

Prove that (1+sintheta-costheta)/(1+sintheta+costheta)="tan"theta/2 .

Prove that sintheta/(1+costheta)+sintheta/(1-costheta)=2/sintheta .

prove that- (sintheta+1-costheta)/(costheta-1+sintheta)=(1+sintheta)/costheta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta

Prove that : (sintheta)/(1+costheta)+(1+costheta)/(sintheta)=2"cosec"theta