Home
Class 11
MATHS
Show that : i^(101)+i^(102)+i^(103)+i^(1...

Show that : `i^(101)+i^(102)+i^(103)+i^(104)=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

i^(53) + i^(72) + i^(93) + i^(102) = 2i .

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

Show that i^(15)+i^(17)+i^(19)+i^(21)+i^(24) is a real number.

i+i^(2)+i^(3)+"………"+i^(101)=

Evaluate : i^(103)

Prove that : i^104+i^109+i^114+i^119=0 .

Show that I+A =(I+A)*I

The value of i^101 + i^102 + i^103 + .....+i^108 is :

Evaluate (i^(57)+i^(70)+i^(91)+i^(101)+i^(104)) .

Consider the observation x_(1)=1, x_(2), x_(3)=3, .............x_(100)=100 x_(101), x_(102), x_(103), x_(104)=104 Median of the given data is