Home
Class 11
MATHS
If a right angle be divided into three p...

If a right angle be divided into three parts `alpha, beta and gamma`, prove that `cot alpha = (tanbeta+tangamma)/(1-tanbeta tangamma)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a right angle be divided into three parts alpha, beta and gamma , prove that cot alpha = (tan beta + tan gamma)/(1-tan beta tan gamma) .

If a right angle be divided into three parts alpha,beta and gamma, prove that cot alpha=(tan beta+tan gamma)/(1-tan beta tan gamma)

A right angle is divided into three positive parts alpha,beta and gamma. Prove that for all possible divisions tan alpha+tan beta+tan gamma>1+tan alpha tan beta tan gamma

A right angle is divided into three positive parts alpha,betaa n dgammadot Prove that for all possible divisions t a nalpha+tanbeta+tangamma>1+tanalphatanbetatangammadot

A right angle is divided into three positive parts alpha,betaa n dgammadot Prove that for all possible divisions t a nalpha+tanbeta+tangamma>1+tanalphatanbetatangammadot

A right angle is divided into three positive parts alpha,betaa n dgammadot Prove that for all possible divisions t a nalpha+tanbeta+tangamma>1+tanalphatanbetatangammadot

If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

If tanalpha+tanbeta+tangamma=tanalphatanbetatangamma,then

Prove that tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)

Prove that tan(alpha-beta)=(tanalpha-tanbeta)/(1+tanalphatanbeta)