Home
Class 9
MATHS
(2a+b)^2-6a-3b-4...

`(2a+b)^2-6a-3b-4`

Promotional Banner

Similar Questions

Explore conceptually related problems

Add the following 3a+6a^2b+4b,2b-9ab^2-6a,-6a-7b+2a^2b

If 4a^2+b^2+2c^2+4a b-6a c-3b c=0, then the family of lines a x+b y+c=0 may be concurrent at point(s) (-1,-1/2) (b) (-1,-1) (-2,-1) (d) (-1,2)

Simplify: 4a b(a-b)-6a^2(b-b^2)-3b^2(2a^2-a)+2a b(b-a)

The factors of 8a^3+b^3-6a b+1 are (a) (2a+b-1)(4a^2+b^2+1-3a b-2a) (b) (2a-b+1)(4a^2+b^2-4a b+1-2a+b) (c) (2a+b+1)(4a^2+b^2+1-2a b-b-2a) (d) (2a-1+b)(4a^2+1-4a-b-2a b)

Add the following expressions: (i) x^3-2x^2y+3x y^2-y^3,\ 2x^3-5x y^2+3x^2y-4y^3 (ii) a^2-2a^3b+3a b^3+4a^2b^2+3b^4,-2a^2-5a b^3+7a^3b-6a^2b^2+b^4

Simplify (a+b)^3+(a-b)^3+6a(a^2-b^2)

|{:(a+b,2a+b,3a+b),(2a+b,3a+b,4a+b),(4a+b,5a+b,6a+b):}|=0

Simplify: 4ab(a-b)-6a^(2)(b-b^(2))-3b^(2)(2a^(2)-a)+2ab(b-a)

Prove that |(a,a+b, a+b+c),(2a,3a+2b,4a+3b+2c),(3a,6a+3b,10a,6b+3c)| = a^3