Home
Class 12
MATHS
Statement 1: The inverse of singular mat...

Statement 1: The inverse of singular matrix `A=([a_(i j)])_(nxxn),w h e r ea_(i j)=0,igeqji sB=([a i j-1])_(nxxn)dot` Statement 2: The inverse of singular square matrix does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn) . Statement 2: The inverse of singular square matrix does not exist.

Statement 1: The inverse of singular matrix A=([a_(i j)])_(nxxn), \ w h e r e \ a_(i j)=0,igeqj \ i s \ B=([a i j^-1])_(nxxn) . Statement 2: The inverse of singular square matrix does not exist.

Statement 1: The inverse of singular matrix A=[a_(ij)]_(n xx n), where a_(ij)=0,i>=jisB=[a_(ij)^(-1)]_(n xx n) Statement 2: The inverse of singular square matrix does not exist.

Statement 1: The determinant of a matrix A=([a_(i j)])_(5xx5)w h e r ea_(i j)+a_(j i)=0 for all ia n dj is zero. Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

In square matrix A=(a_(ij)) if i lt j and a_(ij)=0 then A is

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

Let A=[a_(ij)] be a square matrix of order n such that {:a_(ij)={(0," if i ne j),(i,if i=j):} Statement -2 : The inverse of A is the matrix B=[b_(ij)] such that {:b_(ij)={(0," if i ne j),(1/i,if i=j):} Statement -2 : The inverse of a diagonal matrix is a scalar matrix.

If in a square matrix A=(a_(i j)) we have a_(ji)=a_(i j) for all i , j then A is

Construct 3times4 matrix A=[a_(i j)] whose elements are given by a_(i j)=i+j