Home
Class 11
MATHS
[" The orthogonal projection of "bar(a)=...

[" The orthogonal projection of "bar(a)=2i+3bar(j)+3bar(k)" on "bar(b)=i-2bar(j)+bar(k)" (where "i,bar(j),bar(k)" are unit vectors along three mutually "],[" perpendicular directions) is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The orthogonal projection of bar(a)=2bar(i)+3bar(j)+3bar(k) on bar(b)=bar(i)-2bar(j)+bar(k) (where bar(i)*bar(j)*bar(k) are unit vectors along there mutually perpendicular directions is

The orthogonal projection of bar(a)=2i+3j+3k on bar(b)=i-2j+k is

The vectors 2bar(i)-3bar(j)+bar(k), bar(i)-2bar(j)+3bar(k), 3bar(i)+bar(j)-2bar(k)

Compute 2 bar(j) xx (3bar(i) - 4bar(k)) + (bar(i)+2bar(j)) xx bar(k) .

Find t, for which the vectors 2bar(i) - 3bar(j) + bar(k), bar(i) + 2bar(j) -3bar(k) , bar(j) - tbar(k) are coplanar.

If bar(a) = 2bar(i) - bar(j) + bar(k), and bar(b) = bar(i) - 3bar(j) - 5bar(k) then find |bar(a) xx bar(b)| .

If bar(a)=bar(i)+bar(j)+bar(k) and bar(b)=2bar(i)-3bar(j)-bar(k) , find the unit vector in the direction of bar(a)+bar(b) .

The vectors bar(i)+4bar(j)+6bar(k),2bar(i)+4bar(j)+3bar(k) and bar(i)+2bar(j)+3bar(k) form

The reciprocal of bar(a) where bar(a)=-bar(i)+bar(j)+bar(k),bar(b)=bar(i)-bar(j)+bar(k),bar(c)=bar(i)+bar(j)+bar(k) is