Home
Class 11
MATHS
lim(x rarr0)(2e^(x)-2)/(x)=2...

lim_(x rarr0)(2e^(x)-2)/(x)=2

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x rarr0)(2^(5x)-1)/(x)

lim_(x rarr0)(2^(x)-1)/(x)

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

lim_(x rarr0)((e^(x)-x-1)/(x))

Evaluate : lim_(x rarr0)(a^(2x)-1)/(x)

The value of lim_(x rarr0)(e^(x)-1)/(x) is-

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

The value of lim_(x rarr 0) ((e^(x)-1)/x)

Given lim_(x rarr0)(f(x))/(x^(2))=2 then lim_(x rarr0)[f(x)]=