Home
Class 11
MATHS
" If "bar(a)timesbar(b)=bar(c)timesbar(d...

" If "bar(a)timesbar(b)=bar(c)timesbar(d),bar(a)timesbar(c)=bar(b)timesbar(d)" then "

Promotional Banner

Similar Questions

Explore conceptually related problems

The point of intersection of the lines bar(r)timesbar(a)=bar(b)timesbar(a) and bar(r)timesbar(b)=bar(a)timesbar(b) is 1. bar(a)-bar(b) 2. bar(a)+bar(b) 3. 2bar(a)+3bar(b) 4. 3bar(a)-2bar(b)

If bar(a)xxbar(b)=bar(c)xxbar(d),bar(a)xxbar(c)=bar(b)xxbar(d) then

If bar(a)+bar(b)+bar(c)=bar(0) then bar(a)timesbar(b)=

(bar(a)times(bar(b)+bar(c))+bar(b)times(bar(c)+bar(a))+bar(c)times(bar(a)+bar(b)))*(bar(a)timesbar(b))|= (A) |bar(b)timesbar(c)| (B) |bar(c)timesbar(a)| (C) |bar(a)timesbar(b)+bar(b)timesbar(c)+(bar(c)timesbar(a))| (D) 0

bar(a),bar(b),bar(c) represent three concurrent edges of a rectangular parallelepiped whose lengths are 4,3 ,2 units respectively then find value of (bar(a)+bar(b)+bar(c))*(bar(a)timesbar(b)+bar(b)timesbar(c)+bar(c)timesbar(a))

If bar(a), bar(b), bar(c) are non-coplanar vectors and x, y, z are scalars such that bar(a)=x(bar(b)timesbar(c))+y(bar(c)timesbar(a))+z(bar(a)timesbar(b)) then x =

bar(a),bar(b),bar(c) are vectors such that [bar(a)bar(b)bar(c)]=4 then [bar(a)timesbar(b) bar(b)timesbar(c) bar(c)timesbar(a)] is (A) 16 (B) 64 (C) 4 (D)8

Let a,b, c be three vectors such that |bar(a)|=1,|bar(b)|=2 and if bar(a)times(bar(a)timesbar(c))+bar(b)=bar(0), then angle between bar(a) and bar(c) can be.

Let bar(a),bar(b),bar(c) be three non-zero vectors such that bar(a)+bar(b)+bar(c)=0 .Then lambda(bar(a)timesbar(b))+bar(c)timesbar(b)+bar(a)timesbar(c)=0 where lambda is

Let bar(a),bar(b) and bar(c) be non - zero vectors bar(V)_(1)=bar(a)times(bar(b)timesbar(c)) and bar(V)_(2)=(bar(a)timesbar(b))timesbar(c) vectors bar(V)_(1) and bar(V)_(2) are equal then