Home
Class 12
MATHS
Statement-1 : lim(x to 0-) ("sin"[x])/(...

Statement-1 : `lim_(x to 0-) ("sin"[x])/([x]) = "sin" [x] != 0`, Where [x] is the integral part of x.
Statement-2 : `lim_(x to 0+) ("sin"[x])/([x]) != 0`, where [x] the integral part of x.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

Statement -1 : lim_( x to 0) (sin x)/x exists ,. Statement -2 : |x| is differentiable at x=0 Statement -3 : If lim_(x to 0) (tan kx)/(sin 5x) = 3 , then k = 15

lim_(x rarr0)(x-sin x)/(x^(3)) =

lim_(x rarr0)(sin(x^(2)-x))/(x)

lim_( x to 0) (sin (pi sin^(2)x))/x^(2) =

lim_(x->0)(sin^2x)/x

lim_(x rarr0)(sin x-x)/(x^(3))

lim_(x rarr0)sin^(-1)((sin x)/(x))