Home
Class 12
MATHS
e^(x)cos x," prove that "(dy)/(dx)=sqrt(...

e^(x)cos x," prove that "(dy)/(dx)=sqrt(2)e^(x)cos(x+(pi)/(4))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x)cos x, prove that (d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))

If y=e^(x)cos x, prove that t(d^(2)y)/(dx^(2))=2e^(x)cos(x+(pi)/(2))

If y=e^xcosx , prove that (dy)/(dx)=sqrt(2)\ e^xcos(x+pi/4)

If y=e^x+e^(-x) , prove that (dy)/(dx)=sqrt(y^2-4)

If y=e^x+e^-x , prove that (dy)/(dx)=sqrt(y^2-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y=e^(x)+e^(-x), prove that (dy)/(dx)=sqrt(y^(2)-4)

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If y=e^(x)(sin x+cos x), prove that (d^(2)y)/(dx^(2))-2(dy)/(dx)=2y=0

If cos y=sqrt((cos 3x)/(cos^(3)x)) , prove that, (dy)/(dx)=sqrt(3 sec x sec 3x) .