Home
Class 11
MATHS
Prove that : (i) sqrt(i)= (1+i)/(sqrt(...

Prove that : (i) `sqrt(i)= (1+i)/(sqrt(2))` (ii) `sqrt(-i)=(1- i)/(sqrt(2))` (iii) `sqrt(i)+sqrt(-i)=sqrt(2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(-i) = (1-i)/sqrt2

(iii) (1+i)/(sqrt(2))=sqrt(i)

(i)1/sqrt(2)+sqrt(3)+1/sqrt(2)

Prove that sqrt i+sqrt(-i)=sqrt 2

(sqrt5 + i sqrt3)(-2 + i)

Show that (1 / sqrt(2) + i / sqrt(2))^10 + (1 / sqrt(2) - i / sqrt(2))^10 = 0 .

( (sqrt(2)+i sqrt(3))+(sqrt(2)-i sqrt(3)) )/( (sqrt(3)+i sqrt(2))+(sqrt(3)-i sqrt(2)) )

sqrt(i) = a) +-(1-i)/sqrt(2) b) +-(1+i)/sqrt(2) c) +-(1-i) d) +-(1+i)