Home
Class 12
CHEMISTRY
underset(S^(@)(298K)K^(-1)mol^(-1))(H^(+...

`underset(S^(@)(298K)K^(-1)mol^(-1))(H^(+)(aq))+underset(-10.7)(OH^(-)(aq))rarrunderset(+70)(H_(2)O(l))`
Standard entropy change for the above reaction is

A

`60.3 JK^(-1) mol^(-1)`

B

`80.7 JK^(-1) mol^(-1)`

C

`-70 JK^(-1) mol^(-1)`

D

`+10.7 JK^(-1) mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard entropy change (ΔS°) for the given reaction: \[ \text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O}(l) \] we will follow these steps: ### Step 1: Identify the standard entropies of the reactants and products. - The standard entropy of \(\text{H}^+(aq)\) is given as \(S^°(H^+) = 0 \, \text{J K}^{-1} \text{mol}^{-1}\) (since it is a reference state). - The standard entropy of \(\text{OH}^-(aq)\) is given as \(S^°(OH^-) = -10.7 \, \text{J K}^{-1} \text{mol}^{-1}\). - The standard entropy of \(\text{H}_2\text{O}(l)\) is given as \(S^°(H_2O) = 70 \, \text{J K}^{-1} \text{mol}^{-1}\). ### Step 2: Write the formula for the standard entropy change. The standard entropy change for the reaction can be calculated using the formula: \[ \Delta S° = S^°_{\text{products}} - S^°_{\text{reactants}} \] ### Step 3: Substitute the values into the formula. Substituting the values we have: \[ \Delta S° = S^°(H_2O) - \left(S^°(H^+) + S^°(OH^-)\right) \] \[ \Delta S° = 70 \, \text{J K}^{-1} \text{mol}^{-1} - \left(0 + (-10.7 \, \text{J K}^{-1} \text{mol}^{-1})\right) \] ### Step 4: Simplify the equation. Now, simplifying the equation: \[ \Delta S° = 70 \, \text{J K}^{-1} \text{mol}^{-1} + 10.7 \, \text{J K}^{-1} \text{mol}^{-1} \] \[ \Delta S° = 70 + 10.7 = 80.7 \, \text{J K}^{-1} \text{mol}^{-1} \] ### Step 5: State the final answer. Thus, the standard entropy change for the reaction is: \[ \Delta S° = 80.7 \, \text{J K}^{-1} \text{mol}^{-1} \] ---

To calculate the standard entropy change (ΔS°) for the given reaction: \[ \text{H}^+(aq) + \text{OH}^-(aq) \rightarrow \text{H}_2\text{O}(l) \] we will follow these steps: ### Step 1: Identify the standard entropies of the reactants and products. - The standard entropy of \(\text{H}^+(aq)\) is given as \(S^°(H^+) = 0 \, \text{J K}^{-1} \text{mol}^{-1}\) (since it is a reference state). ...
Promotional Banner

Similar Questions

Explore conceptually related problems

Standard enthalpy and standard entropy change for the oxidation of NH_(3) at 298K are -382.64KJ mol^(-1) and 145.6Jmol^(-1) respectively. Standard free energy change for the same reaction at 298K is

Standard enthalpy and standard entropy changes for the oxidation of ammonia at 298 K are -582.64 kJ mol^(-1) and -150.6 J mol^(-1) , respectively. Standard Gibb's energy change for the same reaction at 298 K is

What is the cell entropy change ( in J K ^(-1)) of the following cell : Pt(s)|underset(p=1atm)(H_(2)(g))|CH_(2)underset(0.1M)(COOH,HCl)|underset(0.1M)(KCl(aq))|Hg_(2)Cl_(2)(s)|Hg The EMF of the cell is found to be 0.045 V at 298K and temperature coefficient if 3.4xxx10^(-4)V K^(-1) ( Given :K_(a(CH_(3)COOH))=10^(-5)M)

The reaction H_(2)O_(2)(aq)+3I^(-)(aq)+2H^(+)(aq)rarrI_(3)^(-)(aq)+2H_(2)O(l) has a rate law : rate = k[H_(2)O_(2)][I^(-)] . What is the order of the reaction with respect to H^(+) , and what is the overall order of the reaction?

For the cell reaction: 2Fe^(3+)(aq)+2l^(-)(aq)to2Fe^(2+)(aq)+l_(2)(aq) E_(cell)^(ɵ)=0.24V at 298K . The rstandard gibbs energy (triangle,G^(ɵ)) of the cell reaction is [Given that faraday constnat F=96400Cmol^(-1)]

The standard enthalpy and entropy changes for the reaction in equilibrium for the forward direction are given below: CO(g) +H_(2)O(g) hArr CO_(2)(g) +H_(2)(g) DeltaH^(Theta)underset(300K). =- 41.16 kJ mol^(-1) DeltaS^(Theta)underset(300K). =- 4.14 xx 10^(-2) kJ mol^(-1) DeltaH^(Theta)underset(1200K). =- 31.93 kJ mol^(-1) DeltaH^(Theta)underset(1200K). =- 2.96 xx 10^(-2) kJ mol^(-1) Calculate K_(p) at each temperature and predict the direction of reaction at 300K and 1200k , when P_(CO) = P_(CO_(2)) =P_(H_(2)) = P_(H_(2)O) =1 atm at initial state.