Home
Class 12
MATHS
If a,b,c, are non-zero real numbers, the...

If a,b,c, are non-zero real numbers, then the inverse of matrix A = `[(a,0,0),(0,b,0),(0,0,c)]` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are non-zero real numbers, then the inverse of the matrix A=[{:(a,0,0),(0,b,0),(0,0,c):}] is equal to :

If a, b, c are non-zero real numbers, then the inverse of the matrix A=[{:(a,0,0),(0,b,0),(0,0,c):}] is equal to

If a, b, c are non-zero real numbers, then the inverse of the matrix A [[a,0,0],[0,b,0],[0,0,c]] is

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

If x, y, z are non-zero real numbers, then the inverse of matrix A=[(x,0, 0) ,(0,y,0),( 0, 0,z)] is (A) [[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (B) xyz[[x^(-1),0,0],[0,y^(-1),0],[0,0,z^(-1)]] (C) (1)/(xyz)[[x,0,0],[0,y,0],[0,0,z]]] (D) (1)/(xyz)[[1,0,0],[0,1,0],[0,0,1]]

If x,y,z are nonzero real numbers, then the inverse of matrix A=[{:(x,0,0),(0,y,0),(0,0,z):}] is ………