Home
Class 12
MATHS
If f (x) = sin (log x) then the value o...

If `f (x) = sin (log x) ` then the value of `f(xy)+f((x)/(y))-2f (x) cos (log y)` is-

Promotional Banner

Similar Questions

Explore conceptually related problems

IF f(x)= log(tan(x/2)) , then the value of f'(x) is

if f(x) = cos (log x) then the value of f(x) f(y)-(1//2) [f(x//y) + f(xy) ] is

If f(x)=log(cosx), then the value of f''(x) is-

If f (x) = cos (log_e x) , find the value of : f(x) f(y)-1/2[f(x/y)+f(xy)] .

If f(x) = cos(log_e x) , then find the value of f(x) cdot f(y) - 1/2[f(x/y) + f(xy)]

If f(x)=log("tan"(x)/(2)) , then the value of f'(x) is -

If f(x)=sin(log x) then f(xy)+f((x)/(y))-2f(x)cos(log y)=(A)cos(log x)(B)sin(log y)(C)cos(log(xy))(D)0