Home
Class 12
MATHS
Prove that tan^(-1)(sqrt((1-cosx)/(1+cos...

Prove that `tan^(-1)(sqrt((1-cosx)/(1+cosx))=x/2, x lt pi`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan(x/2)=pmsqrt[(1-cosx)/(1+cosx)]

Prove that tan^(-1)((cosx)/(1+sinx))=(pi/4-x/2)

Differentiate tan^(-1){sqrt((1-cosx)/(1+cosx))},\ -pi ltx lt pi with respect to x :

Write tan^(-1)(sqrt((1-cosx)/(1+cosx))), 0 lt x lt pi in the simplest form.

Express tan^(-1)(sqrt((1-cosx)/(1+cosx))), x lt pi , in the simplest form.

Prove that tan^(-1)((cosx-sinx)/(cosx+sinx))=(pi/4-x), x lt pi .

Prove that tan^-1((cosx)/(1+sinx))=pi/4-x/2,\ x in (-pi/2,pi/2)

Prove that tan^(-1)((cosx)/(1+sinx))=pi/4-x/2x in [-pi/2,pi/2]

Differentiate the following functions with respect to x : tan^(-1){sqrt((1+cosx)/(1-cosx))} , 0< x < pi

Differentiate the following functions with respect to x : tan^(-1){sqrt((1+cosx)/(1-cosx))} , 0< x < pi