Home
Class 12
MATHS
यदि y=logsqrt((1-tanx)/(1+tanx)) हो, तो ...

यदि `y=logsqrt((1-tanx)/(1+tanx))` हो, तो सिद्ध कीजिए कि-
`(dy)/(dx)= -sec2x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=logsqrt((1-tanx)/(1+tanx)) , prove that (dy)/(dx)=-sec2x .

If y=logsqrt((1+tanx)/(1-tanx)),"Prove that " (dy)/(dx)=sec2x

Find (dy)/(dx) , when If y = sqrt((sec x - tanx)/(sec x + tanx)) , show that (dy)/(dx) = sec x (tanx - sec x) .

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

If y=logsqrt(tanx) , write (dy)/(dx) .

If y=(1-tanx)/(1+tanx) , prove that (dy)/(dx)=(-2)/(1+sin2x) .

If y=(1+tanx)/(1-tanx) , then value of (dy)/(dx) is: