Home
Class 11
MATHS
Prove that:cos Acos2Acos2^2Acos2^3A........

Prove that:`cos Acos2Acos2^2Acos2^3A........ cos2^(n-1)A=`(sin`2^n A)/(2^nsinA)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : cos A cos 2A cos 2^2 A cos 2^3 A........ cos 2^(n-1) A= (sin 2^n A)/(2^n sinA) .

Prove that cos A cos 2A cos 2^(2) A cos 2^(3)A....cos 2^(n-1) A=(sin 2^(n) A)/(2^(n) sin A)

Prove that: cos A cos 2A cos 2^(2)A cos 2^(3)A….....cos 2^(n-1)A=("sin" 2^(n)A)/(2^(n)"sin"A) .

Prove that 1-8sin^2Acos^2A=cos4A

cos A.cos2A.cos2^(^^)2A*cos2^(^^)3A cos2^(^^)nA=sin(2^(^^)nA)/2^(^^)n sin A

Statement-1: For any value of thetane0, lim_(ntooo)cos""(theta)/(2)cos""(theta)/(2^(2))cos""(theta)/(2^(3))...cos""(theta)/(2^(n))=(sintheta)/(theta) Statement-2: cosAcos2Acos2^(2)A...cos2^(n-1)A=(sin2^(n)A)/(2^(n)sinA) and lim_(Ato0)(sinA)/(A)=1.

Statement-1: For any value of thetane0, lim_(ntooo)cos""(theta)/(2)cos""(theta)/(2^(2))cos""(theta)/(2^(3))...cos""(theta)/(2^(n))=(sintheta)/(theta) Statement-2: cosAcos2Acos2^(2)A...cos2^(n-1)A=(sin2^(n)A)/(2^(n)sinA) and lim_(Ato0)(sinA)/(A)=1.

Prove that : cos Acos(60-A)cos(60+A)=1/4cos3A

Prove that cos^4A+sin^4A+2sin^2Acos^2A=1