Home
Class 12
MATHS
3.If \begin{equation*} A = \begin{bmatr...

3.`If \begin{equation*} A = \begin{bmatrix} 3 & 3 & 5 \\ 4 & 4 & 4 \\ \end{bmatrix} \end{equation*}` and `\begin{equation*} B = \begin{bmatrix} -3 & 4 \\ 2 & -5 \\ 1 & 1 \end{bmatrix} \end{equation*} Then find the value of `AB`

Promotional Banner

Similar Questions

Explore conceptually related problems

If B=\begin{bmatrix} 4 & 2\\ 1 & 3 \end{bmatrix} then find B^2

\begin{bmatrix} 1 & 6 \\ 7 & 2 \end{bmatrix} =P+Q , where P is Symmetric and Q is a skew-symmetric then P=

If a ,\ b ,\ c are roots of the equation x^3+p x+q=0 , prove that detrminant of \begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \\ \end{bmatrix} is zero

\begin{bmatrix}6i&-3i&1\\ 4 &3i& -1\\ 20&3&i\\ \end{bmatrix} =x+i y , then a. x=3,y=1 b. x=1,y=3 c. x=0,y=3 d. x=0,y=0

Without expanding, show that the value of each of the following determinant is zero: \begin{vmatrix} 8 & 2 & 7 \\ 12 & 3 & 5 \\ 16 & 4 & 3 \\ \end{vmatrix}

If A=\begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & 2\\ 2 & 2 & 1 \end{bmatrix} , then show that A^2-4A-5I=O ,where I and 0 are the unit matrix and the null matrix of order 3, respectively. Use this result to find A^(-1)dot

(2^1/3+1/3^1/3)^n if the ratio of 7th term from the beginning to the 7th term from the end is 1/6 , then find the value of n

If the 7th terms from the beginning and end in the expansion of ( root(3) 2+1/(root(3)2))^(n) are equal, find the value of n.

In ( 2^(1/3)+1/3^(1/ 3))^n if the ratio of 7th term from the beginning to the 7th term from the end is 1/6, then find the value of ndot

In ( 2^(1/3)+1/3^(1/ 3))^n if the ratio of 7th term from the beginning to the 7th term from the end is 1/6, then find the value of ndot