Home
Class 12
MATHS
The vlaue of the integral int(-1)^(3) ...

The vlaue of the integral
`int_(-1)^(3) ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral underset(-1)overset(3 )int ("tan"^(1)(x)/(x^(2)+1)+"tan"^(-1)(x^(2)+1)/(x))dx is equal to

The value of the integral int_(-4)^(4)[tan^(-1)((x)/(x^(4)+1))+tan^(-1)((x^(4)+1)/(x))]dx equals

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

Evaluate: int_(-1)^3(tan^(-1)(x/(x^2+1))+tan^(-1)((x^2+1)/x))dx

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx

int((tan^(-1)x)^(3))/(1+x^(2))dx is equal to

int (tan^(-1)x)^(3)/(1+x^(2)) dx is equal to