Home
Class 11
MATHS
logx-1/2log(x-1/2)=log(x+1/2)-1/2log(x+1...

`logx-1/2log(x-1/2)=log(x+1/2)-1/2log(x+1/8)`

Promotional Banner

Similar Questions

Explore conceptually related problems

log(x-1)+log(x-2)lt log(x+2)

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

Solve for x:\ log^2 (4-x)+log(4-x)*log(x+1/2)-2log^2(x+1/2)=0

2log x-log(x+1)-log(x-1)=

Solve log(x+1)=2logx

log_(2)(x^(2)-1)=log_((1)/(2))(x-1)

int(dx)/(x(x^2+1) equal(A) log|x|-1/2log(x^2+1)+C (B) log|x|+1/2log(x^2+1)+C (C) -log|x|+1/2log(x^2+1)+C (D) 1/2log|x|+log(x^2+1)+C

Prove that intxlog(1+1/x)dx =x^2/2log((x+1)/x)-x^2/2 logx-1/2log(x+1)+1/2x+c

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these