Home
Class 12
MATHS
If A,B,C are the angles of an acute angl...

If A,B,C are the angles of an acute angled triangle and `cos(B+C-A)=0, sin (C+A-B)=(sqrt(3))/2`, find the values of A,B , and C.

Promotional Banner

Similar Questions

Explore conceptually related problems

In an acute angled triangle ABC, if tan(A+B-C)=1 and ,sec(B+C-A)=2, find the value of A,B and C.

In an acute angled triangle A B C , if tan(A+B-C)=1 and ,sec(B+C-A)=2, find the value of A ,Ba n dCdot

ABC is an acute angled triangle in which cosec (B+C-A) =1 and cot (C+A-B)=1/sqrt(3) , then sin A =

If A,B,C are the angles of a triangle, show that, (i) sin B cos(C +A) + cos B sin (C +A) = 0

If A,B,C are the angles of a triangle, find the maximum values of : sin A sin B sin C

If A, B,C are angles of a acute angled triangle then the least value of tan A tan B tan C is

Each angle A, B,C of the triangle ABC is acute and sin (B+C-A)=1 , tan (C+A-B)= sqrt(3) , find A,B and C.

If A,B, C are the angles of a triangle ABC then (cos A+i sin A)(cos B+i sin B)(cos C+i sin C)