Home
Class 12
MATHS
If a^2+b^2+c^2=1 then show that value of...

If `a^2+b^2+c^2=1` then show that value of the determinant `|a^2+(b^2+c^2)costhetab a(1-costheta)c a(1-costheta)a b(1-costheta)b^2+(c^2+a^2)costhetac b(1-costheta)a c(1-costheta)b c(1-costheta)c^2+(a^2+b^2)costheta|` simplifies to `cos^2theta`

Promotional Banner

Similar Questions

Explore conceptually related problems

(1+cot^(2)theta)(1-costheta)(1+costheta)= ……… .

If a^(2)+b^(2)+c^(2)=1 then |(a^(2)+(b^(2)+c^(2))costheta, ab(1-cos theta),ac(1-cos theta)),(ba(1-cos theta),b^(2)+(c^(2)+a^(2))cos theta,bc(1-cos theta)),(ca(1-cos theta),cb(1-cos theta),c^(2)+(a^(2)+b^(2))costheta)| equals

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

Prove that : (1-costheta)(1+costheta)(1+cot^(2)theta)=1

(sin^(2)theta)/(costheta(1+costheta))+(1+costheta)/(costheta)=?

(sintheta)/(1+costheta) is equal to (a) (1+costheta)/(sintheta) (b) (1-costheta)/(costheta) (c) (1-costheta)/(sintheta) (d) (1-sintheta)/(costheta)

sintheta/(1-cottheta)+costheta/(1-tantheta)= (a) theta (b)1 (c) costheta-sintheta (d) costheta+sintheta

Prove that (1-sintheta+costheta)^2=2(1+costheta)(1-sintheta)

(sintheta)/(1-cottheta)+(costheta)/(1-tantheta) is equal to (a) 0 (b) 1 (c) sintheta+costheta (d) sintheta-costheta

Write the value of "cosec"^(2)theta(1+costheta)(1-costheta).