Home
Class 12
MATHS
If f'(3)=2 , then lim(h->0)(f(3+h^2)-f(...

If `f'(3)=2` , then `lim_(h->0)(f(3+h^2)-f(3-h^2))/(2h^2)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f'(3)=2, then lim_(h rarr0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

If f ' (3)=1 , then Lt_(h to0)(f(3+h)-f(3-h))/(h) is

If f'(2)=1 , then lim_(h to 0)(f(2+h)-f(2-h))/(2h) is equal to

If f(a)=(1)/(4) , then lim_(hrarr0) (f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2))) =

If f'(a)=(1)/(4), then lim_(h rarr0)(f(a+2h^(2))-f(a-2h^(2)))/(f(a+h^(3)-h^(2))-f(a-h^(3)+h^(2)))=0 b.1 c.-2 d.none of these

Let f be differentiable at x=0 and f'(0)=1 Then lim_(h rarr0)(f(h)-f(-2h))/(h)=

If f(x) is differentiable at x=a and f^(prime)(a)=1/4dot Find (lim)_(h->0)(f(a+2h^2)-f(a-2h^2))/(h^2)

If f '(2) =1, then lim _( h to 0 ) (f (2+ h ^(2)) -f ( 2- h ^(2)))/( 2h ^(2)) is equal to