Home
Class 12
MATHS
Show that the derivative of the funct...

Show that the derivative of the function `f` given by `f(x)=2x^3-9x^2+12 x+9` , at `x=1` and `x=2` are equal.

Promotional Banner

Similar Questions

Explore conceptually related problems

find the derivative of the function f given by f(x)=2x^3-9x^2+12 x+9

Show that the derivative of the function f given by f(x)=2x^(3)-9x^(2)+12x+9, at x=1 and x=2 are equal.

Separate the intervals of monotonocity for the function f(x)=-2x^3-9x^2-12 x+1

Separate the intervals of monotonocity for the function f(x)=-2x^3-9x^2-12 x+1

Separate the intervals of monotonocity for the function f(x)=-2x^3-9x^2-12 x+1

The function f (x) = 2x ^(3) + 9x ^(2) + 12 x + 20 is :

The stationary point of f(x) =2x^3-9x^2+12x-3 is

If f(x)=x^(3)-9x^(2)+24x, then f

The function f (x) = (2-x)/(9x-x^(3)) is:

Separate the intervals of monotonocity for the function f(x)=-2x^(3)-9x^(2)-12x+1