Home
Class 12
MATHS
If alpha,beta(beta>alpha), are the root...

If `alpha,beta(beta>alpha),` are the roots of `g(x)=a x^2+b x+c=0` and `f(x)` is an even function, then `int_alpha^betae^(f((g(x))/(x-alpha)))/(e^(f((g(x))/(x-alpha)))+e^(f((g(x))/(x-beta))))=` (a)`|b/(2a)|` (b) `(sqrt(b^2-4a c))/(|2a|)` (c)`|b/a|` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

If alpha, beta are the roots of ax^(2)+bx+c=0 then the equation can be written as A) a(x-alpha)(x-beta) B) a(x-alpha)(x-beta)=0 C) a(x+alpha)(x-beta) D) a(x+alpha)(x-beta)=0

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are (alpha+beta)^(-1) , alpha^(-1)+ beta^(-1) is

If alpha, beta are the roots of a x^(2)+b x+c=0 the equation whose roots are alpha+(1)/(beta) and beta+(1)/(alpha) is

If alpha and beta are the rotos of a x^(2)+b x+c=0 the equation whose roots are 2+alpha and 2+beta is

If alpha, beta are the roots of (x-a) (x-b)+c=0, c ne 0 , then roots of (alpha beta - c) x^(2) + (alpha + beta) x + 1 = 0 are

IF alpha , beta are the roots of x^2 - ax +b=0 , then the whose roots are (alpha + beta ) /( alpha ) , (alpha + beta)/( beta) is

If alpha and beta(alpha

If alpha and beta are the zeros of the quadratic polynomial f(x)=2x^(2)+bx+c ,then evaluate: a[(alpha^(2))/(beta)+(beta^(2))/(alpha)]+b[(alpha)/(beta)+(beta)/(alpha)]

If alpha,beta are the roots of the equation a x^2+b x+c=0, then find the roots of the equation a x^2-b x(x-1)+c(x-1)^2=0 in term of alpha and beta .