Home
Class 12
MATHS
The interval in which the function y=x^(...

The interval in which the function `y=x^(3)` increases more rapid ,than the function `y=6x^(2)+15x+5`
(A) `(-oo,-1)`
(B) `(5,oo)`
(C) `(-1,5)`
(D) `(0,oo)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The interval in which the function x^(3) increases less rapidly than 6x^(2)+15x+5

The interval in which the function x^(3) increases less rapidly than 6x^(2) + 15x + 5 is

the interval in which the function f given by f(x) = x^2 e^(-x) is strictly increasing, is (a) ( -(oo) , (oo) ) (b) ( -(oo) , 0 ) (c) ( 2 , (oo) ) (d) ( 0 , 2 )

The range of the function f(x)=|x-1| is A. (-oo,0) B. [0,oo) C. (0,oo) D. R

The domain of the function f(x)=1/(sqrt(|x|-x)) is: (1) (-oo,oo) (2) (0,oo (3) (-oo,""0) (4) (-oo,oo)"-"{0}

The domain of definition of the function f(x)=ln{x}+sqrt(x-2{x}) is: (where { } denotes fractional part function) (A) (1,oo) (B) (0,oo) (C) (1,oo)~I^(+) (D) None of these

Range of the function f(x)=(ln x)/(sqrt(x)) is (a) (-oo,\ e) (b) (-oo,\ e^2) (c) (-oo,2/e) (d) (-oo,1/e)

Find the intervals in which the function f given by f(x) = x^2 - 4x + 6 is strictly increasing: a)(-oo,2) uu (2,oo) b) (2,oo) c) (-oo,2) d) (-oo,2] uu (2,oo)

Find the intervals in which the function f given by f(x) = x^2 - 4x + 6 is strictly increasing: a)(-oo,2) uu (2,oo) b) (2,oo) c) (-oo,2) d) (-oo,2] uu (2,oo)

The range of the function f(x)=(sin(pi[x]))/(x^(2)+1) (Where [ ] denotes greatest integer function) is (A) {0} (B) (-oo,oo) (C) (0,1) (D) R-{0}