Home
Class 12
MATHS
Let alpha and beta respectively be the...

Let ` alpha` and `beta` respectively be the number of solutions of `e^(x)=x^(2)` and `e^(x)=x^(3)`. Then, the numerical value of `2alpha+3beta`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta respectively be the number of solutions of e^(x)=x^(2) and e^(x)=x^(3) .Then, the numerical value of 2 alpha+3 beta is

If alpha and beta are the roots of the equation x^(2)+3x-2(x+7)=0 then the values of alpha^(3)+beta^(3) is :

If alpha and beta are solutions of the equation 4log_(3)^(2)x-4log_(3)x^(2)+1=0 then the value of |(sqrt(alpha beta)+1)/(sqrt(alpha beta)-1)| is

Given that alpha and beta are the roots of the equation x^(2)=x+7 Prove that (a)(1)/(alpha)=(alpha-1)/(7)(b)alpha^(3)=8 alpha+7 Find the numerical value of (alpha)/(beta)+(beta)/(alpha)

If alpha and beta are zeroes of polynomial p(x) = x^(2) - 5x +6 , then find the value of alpha + beta - 3 alpha beta

If alpha and beta are the roots of the equation x^(2)+3x-2(x+7)=0 then the values of alpha^(3)+beta^(3) is

lt_(x->0)(alpha e^(x)-beta)/(x)=201. then find the values of 'alpha' and ^(x)beta'

If the solution of the equation log_(x)(125x)*log_(25)^(2)x=1are alpha and beta(alpha

If alpha and beta are zeros of the quadratic polynomial q(x)=x^(2)+3x+a,a!=0, then the value of (alpha^(2))/(beta)+(beta^(2))/(alpha) is :