Home
Class 11
MATHS
If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+...

If `f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x` monotonically increasing for every `x in R` then `a` can lie in
(A) `(1,2)`
(B) `(1,oo)`
(C) `(-oo,-3)`
(D) `(-10,-7)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x+1 is monotonically increasing for every x in R then a can lie in

If f(x)=((a^(2)-1)/(3))x^(3)+(a-1)x^(2)+2x+1 is monotonically increasing for every x in R then a can lie in (A) (1,2) (B) (1,oo) (C) (-oo,-3) (D) (-10,-7)

If f(x) = x^(3) + (a – 1) x^(2) + 2x + 1 is strictly monotonically increasing for every x in R then find the range of values of ‘a’

f(x) = x^2 increases on: (a) ( 0,oo) (b) (-oo,0) (c) (-7,-3) (d) (-oo,-3)

If (x^(2)-x)/(1-ax) attains all real values (x in R) then possible value of a are (A) (-oo , 1) (B) (1, oo) (C) [1, oo) (D)(1, 2)

f(x)=2x-tan^(-1)x-log{x+sqrt(x^(2)+1)} is monotonically increasing when (a) x>0 (b) x<0( c) x in R( d ) x in R-{0}

If cos^(2)x-(c-1)cos x+2c>=6 for every x in R, then the true set of values of c is (2,oo)(b)(4,oo)(c)(-oo,-2)(d)(-oo,-4)

If the function f(x)=2x^(2)-kx+5 is increasing on [1,2], then k lies in the interval (a) (-oo,4)(b)(4,oo)(c)(-oo,8)(d)(8,oo)

Set of all possible values of a such that f(x)=e^(2x)-(a+1)e^(x)+2x is monotonically increasing for all x in R is (-oo,a] ,then (a^(3))/(54) is

f(x)=(x-2)|x-3| is monotonically increasing in (a)(-oo,(5)/(2))uu(3,oo)(b)((5)/(2),oo)(c)(2,oo)(d)(-oo,3)