Home
Class 12
MATHS
sum(k =1)^(n) k(1 + 1/n)^(k -1) =...

`sum_(k =1)^(n) k(1 + 1/n)^(k -1)` =

Promotional Banner

Similar Questions

Explore conceptually related problems

sum_(k=1)^n k^3=

sum_(k=1)^ook(1-1/n)^(k-1) =?

sum_(k=1)^(oo)k(1-(1)/(n))^(k-1)=a*n(n-1)bn(n+1)c*n^(2)d.(n+1)^(2)

Value of L = lim_ (n rarr oo) (1) / (n ^ (4)) [1sum_ (k = 1) ^ (n) k + 2sum_ (k = 1) ^ (n-1) k + 3sum_ ( k = 1) ^ (n-2) k + ...... + n.1] is

sum_(k=1)^(k=infty) k( 1+ (1)/(n))^(k-1)=

L = lim_ (n rarr oo) (1) / (n ^ (4)) [1.sum_ (k = 1) ^ (n) k + 2 * sum_ (k = 1) ^ (n-1) k + 3 * sum_ (k = 1) ^ (n-2) k + ......... + n.1]

Value of L = lim_(n->oo) 1/n^4 [1 sum_(k=1)^n k + 2sum_(k=1)^(n-1) k + 3 sum_(k=1)^(n-2) k +.....+n.1] is

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to

lim_(nrarroo) sum_(k=1)^(n)(k^(1//a{n^(a-(1)/(a))+k^(a-(1)/(a))}))/(n^(a+1)) is equal to