Home
Class 11
MATHS
Let omega be a complex cube root of unit...

Let `omega` be a complex cube root of unity with `omega!=1a n dP=[p_(i j)]` be a `nxxn` matrix withe `p_(i j)=omega^(i+j)dot` Then `p^2!=O ,w h e nn=` a.`57` b. `55` c. `58` d. `56`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be a complex cube root of unity with omega!=1a n dP=[p_(i j)] be a nxxn matrix withe p_(i j)=omega^(i+j)dot Then p^2!=O ,when=

Let omega be a complex cube root of unity with omega!=1a n dP=[p_(i j)] be a nxxn matrix withe p_(i j)=omega^(i+j)dot Then p^2!=O , when n= a. 57 b. 55 c. 58 d. 56

Let omega be a complex cube root of unity with omega!=1a n dP=[p_(i j)] be a nxxn matrix withe p_(i j)=omega^(i+j)dot Then p^2!=O ,when= a. 57 b. 55 c. 58 d. 56

Let omega be a complex cube root of unity with omega!=1a n dP=[p_(i j)] be a nxxn matrix withe p_(i j)=omega^(i+j)dot Then p^2!=O , n= a. 57 b. 55 c. 58 d. 56

Let omega be a complex cube root of unity with omega!=1a n dP=[p_(i j)] be a nxxn matrix withe p_(i j)=omega^(i+j)dot Then p^2!=O ,when= a. 55 b. 56 c. 57 d. 58

Let omega be a complex cube root of unity with omega!=1 and P=[p_(ij)] be a n xx n matrix withe p_(ij)=omega^(i+j). Then p^(2)!=O, when n=a..57b 55c.58d.56

Let omega be a complex cube root of unity with omega ne 0 and P=[p_(ij)] be an n x n matrix with p_(ij)=omega^(i+j) . Then p^2ne0 when n is equal to :

Let omega be a complex cube root of unity with omegane1 and P = [p_ij] be a n × n matrix with p_(ij) = omega^(i+j) . Then P^2ne0, , when n =

If omega is the complex cube root of unity, then find (1+omega)(1+omega^2) dot