Home
Class 12
MATHS
Find f^(-1) if it exists: f: A->B where ...

Find `f^(-1)` if it exists: `f: A->B` where `A={0,\ -1,\ -3,\ 2};` `B=` `{-9,\ -3,\ 0,\ 6}` and `f(x)=3x` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Find f^(-1) if it exists: f: A->B where A={1,\ 3,\ 5,\ 7,\ 9}; B= {0,\ 1,\ 9,\ 25 ,\ 49 ,\ 81} and f(x)=x^2 .

Find f^(-1) if it exists: f: A->B where A={1,\ 3,\ 5,\ 7,\ 9}; B= {0,\ 1,\ 9,\ 25 ,\ 49 ,\ 81} and f(x)=x^2 .

If f(x)=x^3+4x^2-x , find f(A) , where A=[(0 ,1, 2 ),(2,-3 ,0),( 1,-1 ,0)] .

Let f : x to Y be a function defined by f(x) = x^2 + 1 for all x ∈ X where X = {-1,0,1,2,3} and Y = {1,2,5,10,11}. If A = { -1,0,2} and B = {1,2,3}. verify that f(A-B) =f (A) - f (B)

If f(x)=x^(3)+4x^(2)-x, find f(A), where A=[[0,1,22,-3,01,-1,0]]

Show that f : A to B, where A=R - {3} , B=R - {1} defined as f(x)=(x-2)/(x-3) is bijective. Find f^-1 .

Find underset(xrarr0)f(x) where f(x)={(2x+3, xle0),(3(x+1), x>0):}

if f'(x) = 3x^2-2/x^3 and f(1)=0 , find f(x).

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .

Let f:DtoR , where D is the domain of f . Find the inverse of f if it exists: Let f:[0,3]to[1,13] is defined by f(x)=x^(2)+x+1 , then find f^(-1)(x) .