Home
Class 11
MATHS
cos^2A (3-4 cos^2A)^2+ sin^2A (3- 4 sin^...

`cos^2A (3-4 cos^2A)^2+ sin^2A (3- 4 sin^2A)^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of cos^(2)A(3-4 cos^(2)A)^(2) + sin^(2)A(3-4 sin^(2)A)^(2) is

cos^(2)A(3-4cos^(2)A)^(2)+sin^(2)A(3-4sin^(2)A)^(2)=?

2cosx-cos3x-cos5x= ............... A) 16 cos ^(3) x sin ^(2) x B) 16 sin^(2) x cos ^(2) x C) 4 cos ^(2) x sin ^(2) x D) 4 sin ^(2) x cos ^(2)x

Sin A + 2sin 2A + sin3A is equal to which of the following? 1. 4sin 2A cos^2(A/2) 2. 2 sin 2A (sinA/2+cosA/2)^2 3. 8 sin A cos A cos^2(A/2) Select the correct answer using the codes given below:

Show that : Cos^4A - Sin^4A = Cos^2A - Sin^2A = 2 Cos^2A - 1

[cos^(2)theta(3-4cos^(2)theta)^(2)+sin^(2)theta(3-4sin^(2)theta)^(2)=

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=

Match list - I with list II ListI " " List II sin 2A " "cos^(2)A - sin^(2)A cos 2A " "2 sin A cos A sin 3A " "2 sin (A)/(2) cos (A)/(2) sin A " "3 sin A - 4 sin^(3) A

(sin^4A-cos^4A)/(sin^2A-cos^2A)=

cos^(6)A+sin^(6)A=1-3/4sin^(2)(2A)