Home
Class 12
MATHS
Let z(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,...

Let `z_(k)=cos(2kpi)/10+isin(2kpi)/10,k=1,2,………..,9`. Then, `1/10{|1-z_(1)||1-z_(2)|……|1-z_(9)|}` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(k)=cos((2kpi)/(10))+isin((2kpi)/(10)) ,k=1,2,…,9. Then match the column

Let z_(k) = cos ((2kpi)/(7))+i sin((2kpi)/(7)),"for k" = 1, 2, ..., 6 , then log_(7)|1-z_(1)|+log_(7)|1-z_(2)|+....+ log_(7)|1-z_(6)| is equal to ________

If z_(k)=cos((kpi)/(10))+isin((kpi)/(10)) , then z_(1)z_(2)z_(3)z_(4) is equal to

If z_(r)=cos.(2rpi)/(5)+isin.(2rpi)/(5) , r=0,1,2,3,4 , then z_(1)z_(2)z_(3)z_(4)z_(5) equals

If z_(k)=cos((k pi)/(10))+i sin((k pi)/(10)), then z_(1)z_(2)z_(3)z_(4) is equal to (A)-1 (B) 2(C)-2 (D) 1

If z_k=cos((kpi)/(10))+isin((kpi)/(10)) , then z_1z_2z_3z_4 is equal to

Let quad cos(2k(pi)/(10))+i sin(2k(pi)/(10));k=1,2,34,...,9z_(k)=cos(2k(pi)/(10))+i sin(2k(pi)/(10));k=1,2,34,...,9 (A) For each z_(k) there exists a z_(j) such that z_(k).z_(j)=1 (ii) there exists a k in{1,2,3,...,9} such that z_(1)z=z_(k)

Let z_k = cos(2kpi/10)+isin(2kpi/10); k=1,2,34,...,9 (A) For each z_k there exists a z_j such that z_k.z_j=1 (ii) there exists a k in {1,2,3,...,9} such that z_1 z = z_k has no solution z in the set of complex numbers

If z_(k)=cos.(pi)/(2^(k))+isin.(pi)/(2^(k)) , k=1,2............ , then the value of z_(1)z_(2) ...............to oo is