Home
Class 12
MATHS
If x=cost, y=sint, then what is (d^(2)y)...

If `x=cost, y=sint,` then what is `(d^(2)y)/(dx^(2))` equal to?

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=cost and x=sint , then what is (dy)/(dx) equal to?

If y = x+e^(x) , then (d^(2)y)/(dx^(2)) is equal to

If x=at^(2),y=2at then (d^(2)y)/(dx^(2)) is equal to

If x=e^(t)cost and y=e^(t)sint , then what is (dx)/(dy) at t=0 equal to?

If y=f(x),p=(dy)/(dx) and q=(d^(2)y)/(dx^(2)), then what is (d^(2)x)/(dy^(2)) equal to ?

If x=2cost-cos2t,y=2sint-sin2t , then the value of (d^(2)y)/(dx^(2)) at t=pi//2 is :

If x=a(t-sint)andy=(1-cost), then find (d^(2)y)/(dx^(2)) .

If x=a(t-sint)andy=(1-cost), then find (d^(2)y)/(dx^(2)) .

If y=f(x)p=(dy)/(dx)" and q"=(d^(2)y)/(dx^(2)) . then what is (d^(2)x)/(dy^(2)) equal to ?