Home
Class 12
MATHS
xsqrt(x)+ysqrt(y)=asqrt(a)...

`xsqrt(x)+ysqrt(y)=asqrt(a)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If 0

If 0 (a) sqrt(x)-\ sqrt(y)=\ sqrt(x-y) (b) sqrt(x)+\ sqrt(x)=\ sqrt(2x) (c) xsqrt(y)=ysqrt(x) (d) sqrt(x y)=\ sqrt(x)\ sqrt(y)

Evaluate the following limits : Lim_(x to a) (xsqrt(x)-asqrt(a))/(x-a)

If log_((sqrt(bsqrt(bsqrt(bsqrt(b)))))(sqrt(asqrt(asqrt(asqrt(asqrt(a))))))=x log_(b) a , then x =

If xsqrt(y)+ysqrt(x)=1"then"(dy)/(dx) equals -

The solution of the differential equation (y+xsqrt(xy)(x+y))dx+(ysqrt(xy)(x+y)-x)dy=0

If x, y are rationals and xsqrt(2) - ysqrt(3) = 0 , show that x = y = 0

If sin^(-1)x+sin^(-1)y+sin^(-1)z=pi , prove that: xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)=2x y z

If sin^(-1)x+sin^(-1)y+sin^(-1)z = pi then prove that xsqrt(1-x^2)+ysqrt(1-y^2)+zsqrt(1-z^2)= 2xyz .