Home
Class 12
MATHS
y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]...

`y=log[sin^(3)x.cos^(4)x.(x^(2)-1)^(5)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(sin^(3)x cos^(5)x-cos^(3)x sin^(5)x)ln(sin2x)*dx=f(x), where f((pi)/(4))=-(1)/(256) then the value of f((5 pi)/(4)) equals

" If "I=int(cos^(3)xdx)/((sin^(4)x+3sin^(2)x+1)tan^(-1)(sin x+cos ecx)),=-A log|tan^(-1)(sin x+cos ecx)|+C" ,then A is equal "

y=log[3^(x)((x+1)/(x-5))^(3/4)]

If y={(log)cos x sin x}{(log)_(sin x)cos x}^(-1)+sin^(-1)((2x)/(1+x^(2))) fin d (dy)/(dx)atx=(pi)/(4)

If y={log_(cos x)sin x}{log_(sin x)cos x)^(-1)+sin^(-1)((2x)/(1+x^(2))) find (dy)/(dx) at x=(pi)/(4)

lim_(n rarr0)(1-cos^(3)x+sin^(3)x+ln(1+x^(3))+ln(1+cos x))/(x^(2)-1+2cos^(2)x+tan^(4)x+sin^(3)x)

Sum of the series 1+x log|(1-sin x)/(cos x))^((1)/(2))+x^(2)log|(1-sin x)/(cos x)|^((1)/(4))+......oo

y={log_(cos x)sin x}{log_(sin x)cos x}^(-1)+sin^(-1)(2(x)/(1+x^(2))) then find (dy)/(dx)=?

The value of the lim_(x rarr0)(sin(5x^(5)+4x^(4)+3x^(3)+2x^(2)))/(ln(cos(x^(3)+x))) is equal

int(sin2x)/(sin^(2)x+2cos^(2)x)dx(i)-log(1+sin^(2)x)+C(ii)log(1+cos^(2)x)+C( iii) -log(1+cos^(2)x)+C(iv)log(1+tan^(2)x)+C