Home
Class 12
MATHS
Prove that if [ vec l vec m vec n] are t...

Prove that if `[ vec l vec m vec n]` are three non-coplanar vectors, then `[ vec l vec m vec n]( vec axx vec b)=| vec ldot vec a vec ldot vec b vec l vec mdot vec a vec mdot vec b vec m vec ndot vec a vec ndot vec b vec n|` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| vec ldot vec a vec ldot vec b vec ldot vec c vec mdot vec a vec mdot vec a vec mdot vec a vec ndot vec a vec ndot vec a vec ndot vec a| .

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| vec ldot vec a vec ldot vec b vec ldot vec c vec mdot vec a vec mdot vec a vec mdot vec a vec ndot vec a vec ndot vec a vec ndot vec a| .

If vec a , vec b , vec c are three non-coplanar vectors, prove that [ vec a+ vec b+ vec c vec a+ vec b vec a+ vec c]=-[ vec a vec b vec c]

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| (vec l. vec a, vec l. vec b, vec l.vec c), (vec m. vec a, vec m. vec b, vec m.vec c),( vec n. vec a, vec n. vec b, vec n.vec c)| .

Prove that [ vec l vec m vec n][ vec a vec b vec c]=| (vec l. vec a, vec l. vec b, vec l.vec c), (vec m. vec a, vec m. vec b, vec m.vec c),( vec n. vec a, vec n. vec b, vec n.vec c)| .

If vectors vec a , vec b ,a n d vec c are coplanar, show that | vec a vec b vec c vec adot vec a vec adot vec b vec adot vec c vec bdot vec a vec bdot vec b vec bdot vec c|=odot

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec b ,a n d vec c are three non-coplanar non-zero vecrtors, then prove that ( vec a . vec a) vec bxx vec c+( vec a . vec b) vec cxx vec a+( vec a . vec c) vec axx vec b=[ vec b vec c vec a] vec a

If vec a , vec ba n d vec c are three non coplanar vectors, then prove that vec d=( vec adot vec d)/([ vec a vec b vec c])( vec bxx vec c)+( vec bdot vec d)/([ vec a vec b vec c])( vec cxx vec a)+( vec cdot vec d)/([ vec a vec b vec c])( vec axx vec b)