Home
Class 12
MATHS
If the circles x^(2) + y^(2) - 6x - 8y ...

If the circles ` x^(2) + y^(2) - 6x - 8y + 12 = 0 , x^(2) + y^(2) - 4x + 6y + k = 0 ` cut orthogonally, then k =

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x ^(2) + y ^(2) - 8x - 6y + c= 0 and x ^(2) + y ^(2) - 2y + d =0 cut orthogonally, then c + d equals

If the two circle x^(2) + y^(2) - 10 x - 14y + k = 0 and x^(2) + y^(2) - 4x - 6y + 4 = 0 are orthogonal , find k.

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 4x + 6y + 4 = 0 orthogonally is

The locus of the centre of the circle which cuts the circles x^(2) + y^(2) + 4x - 6y + 9 = 0 " and " x^(2) + y^(2) - 5x + 4y + 2 = 0 orthogonally is

For the circles x^(2) + y^(2) - 2x + 3y + k = 0 and x^(2) + y^(2) + 8x - 6y - 7 = 0 to cut each other orthogonally the value of k must be

The value of k, if the circles 2x ^(2) + 2y ^(2) - 4x + 6y = 3 and x ^(2) + y ^(2) + kx + y =0 cut orthogonally is

The locus of the centers of the circles which cut the circles x^(2) + y^(2) + 4x – 6y + 9 = 0 and x^(2) + y^(2) – 5x + 4y – 2 = 0 orthogonally is

The two circles x^(2) + y^(2) - 2x + 22y + 5 = 0 and x^(2) + y^(2) + 14x + 6y + k = 0 intersect orthogonally provided k is equal to...